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Why study negation in LLMs?

Negation is present in 25% of English sentences

LLMs struggle when negation is present

Example a
N
A beagleis a type of [MASK] —

A beagle is not a type of [MASK] ——> My, ——»
BERT

an,
— i —

dog

Hossain et al., An analysis of natural language inference benchmarks through the lens of negation, EMNLP 2020
Hosseini et al., Understanding by understanding not: Modeling negation in language models, NAACL 2021



Our Contributions

1. Introducing two novel self-supervised tasks for further
pre-training LMs for negation

2. Creating a large-scale dataset (=6.4M samples) for these tasks

3. Experimental results with BERT and RoBERTa on CondaQA and
eight other benchmarks



Pre-training Tasks
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The computer screen stayed blank. It didn’t display any images.
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The computer screen stayed blonk.] + [ It didn’t display any images. ] V
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+ [ It displayed some images.

Does next sentence have negation?
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Data Collection
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6.4M training instances



Reversing Polarity

Definition: Remove negation if present in the sentence.

Add negation if not present.

We define linguistic rules to reverse polarity (§3.2.1)
F®LLMs fail to reverse polarity due to safety guidelines!

@ Large amounts of heat are wasted [Reverse | Large amounts of heat are wasted ®
when the boiler is not insulated Polarity when the boiler is insulated

TRUE FALSE




Experiments

1. Further pre-training BERT and RoBERTa on:
e Next Sentence Prediction (NSP)
e Next Sentence Polarity Prediction (NSPP)
e Jointly on both tasks

2. Evaluation on:
e CondaQA
e NLI negation benchmarks (RTE, SNLI, MNLI)
e NLU negation benchmarks (QNLI, WiC, WSC)
e LAMA and LAMA-neg



CondaQA

The largest question-answering dataset requiring reasoning over negation

CondaQA contains over 200 unique negation cues:

e Single-word (e.g., not, never)

e Affixal (e.g., unlucky, incorrect)

e Multi-word negation cues (e.g., a lack of, instead of)
CondaOQA contains three types of edits make by crowdworkers:

e Paraphrase: Rewrite the negated sentence
e Scope: Change the scope of the negation
e Affirmation: Remove the negation from the sentence

CondaQA cannot be solved by models relying solely on questions, edit types, or cues.

Ravichander et al., CondaQA: A contrastive reading comprehension dataset for reasoning about negation, EMNLP 2022



Results: CondaQA

Accuracy on CondaQA by Model and Pre-training Task
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Further pre-training on any of our tasks statistically
significantly outperforms off-the-shelf LM



Results Breakdown: CondaQA

Accuracy on CondaQA'’s Original Edits
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Accuracy on CondaQA's Affirmation Edits
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Key Takeaways

Further pre-training on our tasks is beneficial

The NSP task is more beneficial than the NSPP task
Further pre-training on both tasks is not beneficial
The methodology is task-agnostic
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Future work

e Expand to more and larger models
e Use more negation cues in pre-training
e Further pre-train on larger corpora
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Limitations

Pre-training dataset is only sourced from Wikipedia
We only use a subset of the data to pre-train

Our linguistic rules only cover “not”, “n’t”, and “never”
All the corpora we work with are in English
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Thank You!

Questions:
mhrezaei@arizona.edu
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