Paraphrasing in Affirmative Terms Improves Negation Understanding

MohammadHossein Rezaei Eduardo Blanco University of Arizona

Muslim mathematicians were the first to utilize decimals instead of fractions on a large scale...But *nobody* outside of the Muslim world make daily use of them before Stevin.

Muslim mathematicians were the first to utilize decimals instead of fractions on a large scale...But *nobody* outside of the Muslim world make daily use of them before Stevin.

Muslim mathematicians were the first to utilize decimals instead of fractions on a large scale...But *nobody* outside of the Muslim world make daily use of them before Stevin.

• *Definition*: paraphrases without negation

- *Definition*: paraphrases without negation
- Example: I am *not* sad.

- *Definition*: paraphrases without negation
- Example: I am *not* sad.
- Affirmative Interpretation: I am happy.

- *Definition*: paraphrases without negation
- Example: I am *not* sad.
- Affirmative Interpretation: I am happy. I am just ok.

Muslim mathematicians were the first to utilize decimals instead of fractions on a large scale...But *nobody* outside of the Muslim world make daily use of them before Stevin.

Muslim mathematicians were the first to utilize decimals instead of fractions on a large scale...But *nobody* outside of the Muslim world make daily use of them before Stevin. [SEP] Muslim groups were the *only ones* to made daily use of them before Stevin.

Muslim mathematicians were the first to utilize decimals instead of fractions on a large scale...But *nobody* outside of the Muslim world make daily use of them before Stevin. [SEP] Muslim groups were the *only ones* to made daily use of them before Stevin.

• T5-HB (Hossain and Blanco, 2022)

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN
 - 153k (sent w/ neg, affirmative interpretation) pairs

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN
 - 153k (sent w/ neg, affirmative interpretation) pairs
 - Obtained using back-translation
 - \circ Affirmative interpretations: A_{HB}

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN
 - 153k (sent w/ neg, affirmative interpretation) pairs
 - Obtained using back-translation
 - \circ Affirmative interpretations: A_{HB}
- T5-CG (Vorobev and Kuznetsov, 2023)

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN
 - 153k (sent w/ neg, affirmative interpretation) pairs
 - Obtained using back-translation
 - \circ Affirmative interpretations: A_{HB}
- T5-CG (Vorobev and Kuznetsov, 2023)
 - Off-the-shelf paraphraser

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN
 - 153k (sent w/ neg, affirmative interpretation) pairs
 - Obtained using back-translation
 - \circ Affirmative interpretations: A_{HB}
- T5-CG (Vorobev and Kuznetsov, 2023)
 - Off-the-shelf paraphraser
 - Trained on 419k pairs of sentences and paraphrases generated by GPT-3.5

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN
 - 153k (sent w/ neg, affirmative interpretation) pairs
 - Obtained using back-translation
 - \circ Affirmative interpretations: A_{HB}
- T5-CG (Vorobev and Kuznetsov, 2023)
 - Off-the-shelf paraphraser
 - Trained on 419k pairs of sentences and paraphrases generated by GPT-3.5
 - Generate 5 paraphrases and choose the first one without negation, if any;

- T5-HB (Hossain and Blanco, 2022)
 - Off-the-shelf affirmative interpretation generator
 - Trained on Large-AFIN
 - 153k (sent w/ neg, affirmative interpretation) pairs
 - Obtained using back-translation
 - \circ Affirmative interpretations: A_{HB}
- T5-CG (Vorobev and Kuznetsov, 2023)
 - Off-the-shelf paraphraser
 - Trained on 419k pairs of sentences and paraphrases generated by GPT-3.5
 - Generate 5 paraphrases and choose the first one without negation, if any; otherwise, choose the first one
 - \circ Affirmative interpretations: A_{CG}
 - \circ Simple Paraphrases: S_{CG}

You

Can you paraphrase "I am not happy" without negation?

ChatGPT

Certainly! You can express the same sentiment without using negation by saying, "I feel unhappy" or "I lack happiness."

ዕሪዎ

You

How many negations are there in "I feel unhappy"? $\ensuremath{\mathcal{O}}$

ChatGPT

There is one negation in the phrase "I feel unhappy." The negation is present in the word "unhappy," which is the opposite of "happy."

0000

You

Can you paraphrase "I am not happy" without negation?

ChatGPT

Certainly! You can express the same sentiment without using negation by saying, "I feel unhappy" or "I lack happiness."

ዕሪዎ

You

How many negations are there in "I feel unhappy"? $\ensuremath{\mathcal{O}}$

ChatGPT

There is one negation in the phrase "I feel unhappy." The negation is present in the word "unhappy," which is the opposite of "happy."

0000

You

Can you paraphrase "I am not happy" without negation?

ChatGPT

Certainly! You can express the same sentiment without using negation by saying, "I feel unhappy" or "I lack happiness."

ዕሪዎ

You

How many negations are there in "I feel unhappy"? $\ensuremath{\mathcal{O}}$

ChatGPT

There is one negation in the phrase "I feel unhappy." The negation is present in the word "unhappy," which is the opposite of "happy."

0000

• CondaQA (Ravichander et al., 2022)

- CondaQA (Ravichander et al., 2022)
 - The largest question-answering corpus that requires reasoning over negation

- CondaQA (Ravichander et al., 2022)
 - The largest question-answering corpus that requires reasoning over negation
- Five NLU Tasks

- CondaQA (Ravichander et al., 2022)
 - The largest question-answering corpus that requires reasoning over negation
- Five NLU Tasks
 - CommonsenseQA
 - STS-B
 - o QNLI
 - \circ WiC
 - WSC

		Input Rep	presentation	Acc.	Group Consistency			
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Rep	presentation	Acc.	G	roup Co	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Rep	presentation	Acc.	G	roup Co	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedOA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Rej	presentation	Acc.	G	broup Co	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation								
RoBERTa-Large	355M	P+Q	P+Q	64.9	29.6	61.3	42.3	48.3

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Rej	presentation	Acc.	G	roup Co	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	(54.1)	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation RoBERTa-Large	355M	P+O	P+O	64.9	29.6	61.3	42.3	48.3

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Rej	presentation	Acc.	G	roup Co	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation								
RoBERTa-Large	355M	P+Q	P+Q	64.9	29.6	61.3	42.3	48.3
w/ sentence with neg. from P (S)		P+Q+S	P+Q+S	65.2	31.1	58.4	44.1	49.2
w/ 1st par. of S by T5-CG (S _{CG})		P+Q+S _{CG}	P+Q+S _{CG}	65.7	28.4	60.8	42.4	48.6
w/ Affirmative Interpretations								
-		$P+Q+A_{HB}$	P+Q	62.8	26.3	60.5	39.2	43.3
			P+O+AHR	67.1*	31.4	61.9	43.8	50.7

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Rep	presentation	Acc.	G	roup Co	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation								
RoBERTa-Large	355M	P+Q	P+Q	64.9	29.6	61.3	42.3	48.3
w/ sentence with neg. from P (S)		P+Q+S	P+Q+S	65.2	31.1	58.4	44.1	49.2
w/ 1st par. of S by T5-CG (S _{CG})		$P+Q+S_{CG}$	$P+Q+S_{CG}$	65.7	28.4	60.8	42.4	48.6
w/ Affirmative Interpretations								
*		$P+Q+A_{HB}$	P+Q	62.8	26.3	60.5	39.2	43.3
		P+O+AHR	P+O+A _{HB}	(67.1)	31.4	61.9	43.8	50.7

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Rep	presentation	Acc.	G	roup Co	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation								
RoBERTa-Large	(355M)	P+Q	P+Q	64.9	29.6	61.3	42.3	48.3
w/ sentence with neg. from P (S)	\smile	P+Q+S	P+Q+S	65.2	31.1	58.4	44.1	49.2
w/ 1st par. of S by T5-CG (S_{CG})		$P+Q+S_{CG}$	$P+Q+S_{CG}$	65.7	28.4	60.8	42.4	48.6
w/ Affirmative Interpretations								
-		$P+Q+A_{HB}$	P+Q	62.8	26.3	60.5	39.2	43.3
		$P+O+A_{HB}$	P+O+A _{HB}	(67.1*)	31.4	61.9	43.8	50.7

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Repr	resentation	Acc.	G	roup C	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation								
RoBERTa-Large	355M	P+Q	P+Q	64.9	29.6	61.3	42.3	48.3
w/ sentence with neg. from P (S)		P+Q+S	P+Q+S	65.2	31.1	58.4	44.1	49.2
w/ 1st par. of S by T5-CG (S_{CG})		$P+Q+S_{CG}$	$P+Q+S_{CG}$	65.7	28.4	60.8	42.4	48.6
w/ Affirmative Interpretations								
		$P+Q+A_{HB}$	P+Q	62.8	26.3	60.5	39.2	43.3
		$P+Q+A_{HB}$	$P+Q+A_{HB}$	67.1*	31.4	61.9	43.8	50.7
		$P+Q+A_{CG}$	P+Q	61.3	23.4	59.6	37.8	37.8
		$P+Q+A_{CG}$	$P+Q+A_{CG}$	66.4*	31.7	62.6	44.6	49.4
		$P+Q+A_{HB}+A_{CG}$	$P+Q+A_{HB}+A_{CG}$	65.6	30.1	60.9	43.7	49.9
		P+Q+A _G	P+Q	63.6	26.7	61.4	38.8	43.9
		$P+Q+A_G$	$P+Q+A_{HB}$	64.4	28.3	57.2	40.7	46.2
		$P+Q+A_G$	$P+Q+A_{CG}$	65.6	30.3	61.3	42.4	49.0
		$P+Q+A_G \text{ or } A_{HB}$	P+Q	62.5	25.7	60.1	38.6	42.4
		$P+Q+A_G \text{ or } A_{HB}$	$P+Q+A_{HB}$	65.7	30.2	61.1	41.3	48.9
		$P+Q+A_G$ or A_{CG}	P+Q	60.6	22.0	57.9	35.2	36.8
		$P+Q+A_G \text{ or } A_{CG}$	$P+Q+A_{CG}$	66.7*	32.2	62.2	44.9	50.9

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Repr	resentation	Acc.	G	roup C	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation								
RoBERTa-Large	355M	P+Q	P+Q	64.9	29.6	61.3	42.3	48.3
w/ sentence with neg. from P (S)		P+Q+S	P+Q+S	65.2	31.1	58.4	44.1	49.2
w/ 1st par. of S by T5-CG (S_{CG})		$P+Q+S_{CG}$	P+Q+S _{CG}	65.7	28.4	60.8	42.4	48.6
w/ Affirmative Interpretations								
		$P+Q+A_{HB}$	P+Q	62.8	26.3	60.5	39.2	43.3
		$P+Q+A_{HB}$	$P+Q+A_{HB}$	67.1*	31.4	61.9	43.8	50.7
		$P+Q+A_{CG}$	P+Q	61.3	23.4	59.6	37.8	37.8
		$P+Q+A_{CG}$	$P+Q+A_{CG}$	66.4*	31.7	62.6	44.6	49.4
		$P+Q+A_{HB}+A_{CG}$	$P+Q+A_{HB}+A_{CG}$	65.6	30.1	60.9	43.7	49.9
		P+Q+A _G	P+Q	63.6	26.7	61.4	38.8	43.9
		P+Q+A _G	$P+Q+A_{HB}$	64.4	28.3	57.2	40.7	46.2
		$P+Q+A_G$	$P+Q+A_{CG}$	65.6	30.3	61.3	42.4	49.0
		$P+Q+A_G \text{ or } A_{HB}$	P+Q	62.5	25.7	60.1	38.6	42.4
		$P+Q+A_G \text{ or } A_{HB}$	$P+Q+A_{HB}$	65.7	30.2	61.1	41.3	48.9
		$P+Q+A_G$ or A_{CG}	P+Q	60.6	22.0	57.9	35.2	36.8
		$P+Q+A_G \text{ or } A_{CG}$	$P+Q+A_{CG}$	66.7*	32.2	62.2	44.9	50.9

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

		Input Repr	resentation	Acc.	G	roup C	onsisten	су
	# Pars.	Training	Testing		All	Par.	Sco.	Aff.
From Ravichander et al. (2022)								
RoBERTa-Large	355M	P+Q	P+Q	54.1	13.6	51.6	26.5	27.2
UnifiedQA-v2-Base	220M	P+Q	P+Q	58.0	17.5	54.6	30.4	33.0
UnifiedQA-v2-Large	770M	P+Q	P+Q	66.7	30.2	64.0	43.7	46.5
UnifiedQA-v2-3B	3B	P+Q	P+Q	73.3	42.2	72.8	55.7	57.2
Our Implementation								
RoBERTa-Large	355M	P+Q	P+Q	64.9	29.6	61.3	42.3	48.3
w/ sentence with neg. from P (S)		P+Q+S	P+Q+S	65.2	31.1	58.4	44.1	49.2
w/ 1st par. of S by T5-CG (S_{CG})		$P+Q+S_{CG}$	$P+Q+S_{CG}$	65.7	28.4	60.8	42.4	48.6
w/ Affirmative Interpretations								
		$P+Q+A_{HB}$	P+Q	62.8	26.3	60.5	39.2	43.3
		$P+Q+A_{HB}$	$P+Q+A_{HB}$	67.1	31.4	61.9	43.8	50.7
		$P+Q+A_{CG}$	P+Q	61.3	23.4	59.6	37.8	37.8
		$P+Q+A_{CG}$	$P+Q+A_{CG}$	66.4*	31.7	62.6	44.6	49.4
		$P+Q+A_{HB}+A_{CG}$	$P+Q+A_{HB}+A_{CG}$	65.6	30.1	60.9	43.7	49.9
		P+Q+A _G	P+Q	63.6	26.7	61.4	38.8	43.9
		$P+Q+A_G$	$P+Q+A_{HB}$	64.4	28.3	57.2	40.7	46.2
		$P+Q+A_G$	$P+Q+A_{CG}$	65.6	30.3	61.3	42.4	49.0
		$P+Q+A_G \text{ or } A_{HB}$	P+Q	62.5	25.7	60.1	38.6	42.4
		$P+Q+A_G$ or A_{HB}	$P+Q+A_{HB}$	65.7	30.2	61.1	41.3	48.9
		$P+Q+A_G$ or A_{CG}	P+Q	60.6	22.0	57.9	35.2	36.8
		$P+Q+A_G \text{ or } A_{CG}$	$P+Q+A_{CG}$	66.7*	32.2	62.2	44.9	50.9

Table 1: Results on the CondaQA test set. Q, P and S stand for question, passage and sentence with negation from P. S_{CG} stands for the first paraphrase of S obtained with T5-CG, without avoiding negations. An asterisk ('*') indicates statistically significant improvements (McNemar's test (McNemar, 1947), p < 0.05) with respect to not using affirmative interpretations (P+Q). UnifiedQA is fine-tuned with \approx 1M question-answer pairs from 20 corpora yet it does not outperform our best approach to incorporate affirmative interpretations (Accuracy: 66.7 vs. 67.1) unless it uses an order of magnitude more parameters (3B vs. 355M). The negated sentence (S) or a paraphrase that is not an affirmative interpretation (S_{CG}) bring minor improvements compared to A_{HB} and A_{CG} affirmative interpretations.

Negated sentence

Table 2: Qualitative analysis of A_{HB} affirmative interpretations that result in fixing errors made by the system not using affirmative interpretations with CondaQA (P+Q vs. P+Q+A_{HB}, Table 1). The affirmative interpretations rephrase in affirmative terms an adjective (48%), a verb (28%), or a quantity (24%). We also observe that 10% are erroneous as they simply drop the negated content.

	Negated sentence	Affirmative interpretation
Adjective (48%)	The island became <i>completely uninhabited</i> by 1980 with the automation of the lighthouse.	The island became <i>vacant</i> by the 1980s because of the automation of the lighthouse.
_	They are also made to work the company <i>unpaid</i> as a form of "training".	They are made to work the company <i>free</i> as a form of "training".

Table 2: Qualitative analysis of A_{HB} affirmative interpretations that result in fixing errors made by the system not using affirmative interpretations with CondaQA (P+Q vs. P+Q+A_{HB}, Table 1). The affirmative interpretations rephrase in affirmative terms an adjective (48%), a verb (28%), or a quantity (24%). We also observe that 10% are erroneous as they simply drop the negated content.

	Negated sentence	Affirmative interpretation
Adjective (48%)	The island became <i>completely uninhabited</i> by 1980 with the automation of the lighthouse.	The island became <i>vacant</i> by the 1980s because of the automation of the lighthouse.
	They are also made to work the company <i>unpaid</i> as a form of "training".	They are made to work the company <i>free</i> as a form of "training".
Verb (28%)	Early Negro leagues were able to attract top talent but <i>were unable</i> to retain them due to financial, logistical and contractual difficulties.	Early Negro Leagues were able to attract top talent but <i>failed</i> to retain them due to financial, logistical and contractual difficulties.
	Although the original date is <i>not used in modern times</i> , it has become an official holiday.	Although the original date was <i>used in the ancient times</i> , it has become an official holiday.

Table 2: Qualitative analysis of A_{HB} affirmative interpretations that result in fixing errors made by the system not using affirmative interpretations with CondaQA (P+Q vs. P+Q+A_{HB}, Table 1). The affirmative interpretations rephrase in affirmative terms an adjective (48%), a verb (28%), or a quantity (24%). We also observe that 10% are erroneous as they simply drop the negated content.

	Negated sentence	Affirmative interpretation
Adjective (48%)	The island became <i>completely uninhabited</i> by 1980 with the automation of the lighthouse.	The island became <i>vacant</i> by the 1980s because of the automation of the lighthouse.
	They are also made to work the company <i>unpaid</i> as a form of "training".	They are made to work the company <i>free</i> as a form of "training".
Verb (28%)	Early Negro leagues were able to attract top talent but <i>were unable</i> to retain them due to financial, logistical and contractual difficulties.	Early Negro Leagues were able to attract top talent but <i>failed</i> to retain them due to financial, logistical and contractual difficulties.
	Although the original date is <i>not used in modern times</i> , it has become an official holiday.	Although the original date was <i>used in the ancient times</i> , it has become an official holiday.
Quantity (24%)	But nobody outside of the Muslim world made daily use of them before Stevin.	Muslim groups were the only ones to made daily use of them before Stevin.
	However, he enjoyed it but not at that age.	He enjoyed it at another age.
Drop negation without further mod-	The <i>unpopular</i> central government found itself in the difficult position of trying to gain support for spending cuts from the recalcitrant regional governments.	The central government found itself in a difficult po- sition trying to get support for spending cuts from recalcitrant regional governments.
ifications (10%)	Approximately 30% of the acellular component of bone consists of organic matter, while roughly 70% by mass is attributed to the <i>inorganic</i> phase.	Around 30% of the acellular component of bone is made up by organic matter.

Table 2: Qualitative analysis of A_{HB} affirmative interpretations that result in fixing errors made by the system not using affirmative interpretations with CondaQA (P+Q vs. P+Q+A_{HB}, Table 1). The affirmative interpretations rephrase in affirmative terms an adjective (48%), a verb (28%), or a quantity (24%). We also observe that 10% are erroneous as they simply drop the negated content.

• Affirmative Interpretations should:

- Affirmative Interpretations should:
 - (a) not contain negation

- Affirmative Interpretations should:
 - (a) not contain negation
 - \circ (b) preserve the meaning

- Affirmative Interpretations should:
 - (a) not contain negation
 - (b) preserve the meaning

% w/ negation % meaning-preserving

Table 3: Qualitative analysis (100 samples from CondaQA) of affirmative interpretations (A_{HB} and A_{CG}) and the first paraphrase by T5-CG without avoiding negation (S_{CG}). Affirmative interpretations are less meaningpreserving, but the experimental results demonstrate that they are more beneficial (Table 1).

- Affirmative Interpretations should:
 - (a) not contain negation
 - (b) preserve the meaning

	% w/ negation	% meaning-preserving
A _{HB}	23	64
A _{CG}	46	83
S _{CG}	60	90

Table 3: Qualitative analysis (100 samples from CondaQA) of affirmative interpretations (A_{HB} and A_{CG}) and the first paraphrase by T5-CG without avoiding negation (S_{CG}). Affirmative interpretations are less meaningpreserving, but the experimental results demonstrate that they are more beneficial (Table 1).

• The idea is simple yet effective:

- The idea is simple yet effective:
 - complement inputs that contain negation with a paraphrase that does not contain negation

- The idea is simple yet effective:
 - complement inputs that contain negation with a paraphrase that does not contain negation
- Automatically obtained (noisy) affirmative interpretations yield improvements with:

- The idea is simple yet effective:
 - complement inputs that contain negation with a paraphrase that does not contain negation
- Automatically obtained (noisy) affirmative interpretations yield improvements with:
 - (a) CondaQA compared with a model with twice as many parameters pre-trained with ≈1M question-answer pairs from 20 existing corpora and

- The idea is simple yet effective:
 - complement inputs that contain negation with a paraphrase that does not contain negation
- Automatically obtained (noisy) affirmative interpretations yield improvements with:
 - (a) CondaQA compared with a model with twice as many parameters pre-trained with ≈1M question-answer pairs from 20 existing corpora and
 - (b) five NLU tasks.

- The idea is simple yet effective:
 - complement inputs that contain negation with a paraphrase that does not contain negation.
- Automatically obtained (noisy) affirmative interpretations yield improvements with:
 - (a) CondaQA compared with a model with twice as many parameters pre-trained with ≈1M question-answer pairs from 20 existing corpora and
 - (b) five NLU tasks.
- The methodology is architecture- and task-agnostic.